4.7 Brownian Bridge
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4.7.1 Gaussian Process

Definition 4.7.1:

A Gaussian process X(t), t> 0, is a stochastic
process that has the property that, for arbitrary
times 0 <t, <t, <...<t, the random variables
X(ty), X(t,), ..., X(t,) are jointly normally
distributed.




 The joint normal distribution of a set of vectors
IS determined by their means and covariances.

More generally, a random column vector
X = (X1,...,Xn)", where the superscript tr
denotes transpose, is jointly normal if it has
joint density

1

1 -1 . tr
fx(x) = N ORTE exp {—E(x — p)C™(x — p) } : (2.2.18)

In equation (2.2.18), x = (Z1,...,ZTn) 18 a TOW
vector of dummy variables, it = (KL15. .., [n) 1S

the row vector of expectations, and C' is the
positive definite matriz of covariances.




 For a Gaussian process, the joint distribution
of X(t,), X(t,), ..., X(t,) Is determined by the
means and covariances of these random
variables.

» \We denote the mean of X(t) by m(t), and, for
s>0,t>0, we denote the covariance of X(S)

and X(t) by c(s, t); I.e.,
m(t) = EX (t),c(s,t) = E[(X (s) ~m(s) X () -m(t))]



Example 4.7.2 (Brownian motion)

Brownian motion W(t) is a Gaussian process.
For 0 <t,<t,<...<t, the Increments

|, =W(t), 1, =W(t,)-W(),..., I, =W(t,)-W(t,,)
W(t,)=0
are independent and normally distributed.

Increments over nonoverlapping time intervals are independent
W(t)-W(s)~N(0,t-s)

W(t,) :W(2t1)+|2

Writing A
W)= W(t)=> 1. W)= 1,




Example 4.7.2 (Brownian motion)
0<t<t <..<t,

» The random variables W(t,), W(t,), ..., W(t ) are

jointly normally distributed. Gaussian process

Independent normal random variables are jointly normal.
= 11,,....I_are jointly normal

Linear combinations of jointly normal random variables
are jointly normal.

 The mean function for Brownian motion IS
m(t) =EW () =0




Example 4.7.2 (Brownian motion)

* \WWe may compute the covariance by letting 0 <
s <t be given and noting thit

E[W/(s)W(1)]-E[W/(S)IE[W(1)]
c(s,t) = E[W (s)W (t)] = E[W (s)(W (t) ~W (5) +W (s))]
— EW ()W (©) ~W (s))]+ EW ()]

« Because W(s) and W(t) - W(s) are independent

and both have mean zero, we see that
E[W (s)(W (1) -W (s))]=0




Example 4.7.2 (Brownian motion)

o(s,t) = EW (s)W (t) |= E[W (s)W (£) -W (5) + W (5) )]
— Ejw “W(s))]+ EW2(s)]

« The other term, E[W 4(s)], is the variance of
W(s), which is s.

E[W2(s)]-(EIST])?
V&I’ [W(t-j_|_1) — W(tz)] — t-i_|_1 — tz’. (333)




Example 4.7.2 (Brownian motion)

* \We conclude that c(s,t)=s when 0 <s <t.

» Reversing the roles of s and t, we conclude that
c(s,)=twhen0<t<s.

* In general, the covariance function for
Brownian motion is then

c(s,t) =s At,

where sAt denotes the minimum of s and t.



Example 4.7.3
(It0 Iintegral of a deterministic integrand)

» Let A(?) be a nonrandom function of time, and
define t
() = jo A(s)dW (s)

where W(t) is a Brownian motion. Then I(t) Is
a Gaussian process, as we now show.

* In the proof of Theorem 4.4.9, we showed that,
for fixed U< R , the process

M, (t) = exp{ul (t) —%uz j; N (s)ds}

IS @ martingale. 10



Example 4.7.3
(It0 integral of a deterministic integrand)

1 . 5 ] -
M, (1) = exp{fd (f)—Eu‘ L A‘(s)ds} IS @ martingale.

 Then
L2 [ a2 (s)ds .
1=M_,(0)=EM/(t) =e 2 * -Ee

and we thus obtained the moment-generating

function formula X ~ N(g,0?)
1 t
Eell® EUZLAZ(S)O'S Mx(t) = E(e")

(with mean zero and variance [ )
+ 1(t)~N(0, [[x*(5)0s) u



Example 4.7.3
(It0 integral of a deterministic integrand)

« We have shown that I(t) is normally distributed,
verification that the process Is Gaussian
requires more.

« Verify that, forO<t, <t,<... <t the random
variables I(ty), I(t,), ..., I(t,) are jointly
normally distributed.

12



Example 4.7.3
(It0 Iintegral of a deterministic integrand)

+ It turns out that the increments | L(D~N(0, [ ()
| (t1) _W: | (tl)’ | (tz) — 1 (t1) ----- I (tn) — | (tn—l)
are normally distributed and independent(p.14),
and from this the joint normality of I(t,), I(t,), ... ,I(t))
follows by the same argument as used in Example
4.7.2 for Brownian motion.

1(t,)=(1(t,)-1(0))

1(t)=(1(ty)-1(ty)+(I(t)-1(0))

Independent normal random variables are jointly normal.

=) (1(t)-1(0)), (I(t,)-1(t)),...,(I(t,)-1(t,,)) are jointly normal

Linear combinations of jointly normal random variables are jointly
normal. 13




Example 4.7.3
(It0 Iintegral of a deterministic integrand)

 Next, we show that, for 0 <t, <t,, the two
random increments I(t,)-1(0)=I(t,) and I(t,)-I(t,)
are normally distributed and independent.

« The argument we provide can be iterated to
prove this result for any number of increments.

14



Example 4.7.3
(It0 integral of a deterministic integrand)

- For fixed u, € R, the martingale property of M,

Implies that

M,, () = EIM,, (t,) | Ft,)]
» Now letu, e R be fixed. Because ) is F(ty)-

Measura
by this ¢

Ivlul (tl) — E

M, ()M, (t,)

M, )

| F(tl)}

M Uy (tl) .

ole, we may multiply the equation above
uotient to obtain

| L NER
M (t) = exp{u](f) X L A (s)d.s}

_ E{exp{ull t)+u,(1(t,) 1 (L)) —%uf [ & (s)ds —%uj S (s)ds}| F(tl)}

15




Example 4.7.3
(1t0 Integral of a deterministic integrand)

fl,;f“l (rl) = E|:E}{p{lflf(ﬁ) +u,(I(z,)—1(¢,)) — % u; IDI N (5)ds — % 10, »[1 A’ (s)ds}- | F(rl)}

* \We now take expectations

| L NER
1=M, (0)=EM, (t,) M, (@)= exp{uf (1) - S L A (s)ds}

E(E[X|G i t )
. I[E; )I(D ~E exp{ull (6)+0,(16) - 1)~ S0 [ 8 (9)ds -2 vz [ A2<s>dsH

= Elexp{u, 1 (t) +u, (1 (t,) - | (tl))}]/-é{p{ % u?2 El A*(s)ds —%UZZI:Z A (s)ds}

* Where we have used the fact that A%(S) IS
nonrandom to take the integrals of A%(S)
outside the expectation on the right-hand side.s



Example 4.7.3
(1t0 Integral of a deterministic integrand)

1 = E[E}{p{ul I(t) +u,(I(z,) - I(, ))}] : expj— lsz .I.n A (s)ds — %H; I A’ (3)(3’31-

| 2 f

« This leads to the moment-generating function
TOrmula efexptuyt 1) +u, (1) - 1))

_ exp{% NS (s)ds} . exp{% HES (s)ds}

17



Example 4.7.3
(It0 Iintegral of a deterministic integrand)

E[explu, 1 (t,) +u, (1(t,) = 1 (t))]]

-

. 1 ot o0
= exps Eul _[O A (s)ds}-exp<

\

1 oot o0
Euz . A (s)ds}

\

 The right hand side is the product of

— the moment-generating fun

ction for a normal random

i : i t,
variable with mean zero and variance jo A2(s)ds

— the moment-generating fun

ction for a normal random

variable with mean zero and variance [ ?(s)ds

X ~ N (p,0?)
Mx(t) = E(e"*)

t

18



Example 4.7.3
(It0 Iintegral of a deterministic integrand)

Elexpfu, 1 (t) +u, (1 ()~ 1(1)]] [()~N(0, [[2*())
- exp{% u’ I: A (s)ds} . exp{% us _[t zz A (s)ds}
1(t,)~ N(O, j:Az(s)ds) I(t,)-1(t,) ~ N(O, LZAZ(S)ds)

* |t follows that I(t,) and I(t,)-1(t,) must have
these distributions, and because their joint
moment-generating function factors into this
product of moment-generating functions,
they must be independent.

19



Example 4.7.3

(It0 integral of a deterministic integrand)

E[1(t)1(t,)]-E[NAHETI(E,)]

e We have c(t,t,)=E[I(t)I(t)]=E[NE)(1t,)- 1)+ 1))

|(t)ATI(L,)-1(ty) FE 1L

=E[1t)(1(t,) - 1)+ EI’(t) | erg = /m ds

~ EI(1)-EfHG)— 1 (1)]+ [ £(5)d5

:jo N(s)ds [0<t,<t,

 For the general case where s> 0 and t> 0 and
we do not know the relationship between s and
t, we have the covariance formula

c(s,1) = jot A% (U)du 2



4.7.2 Brownian Bridge as a
Gaussian Process

Definition 4.7.4.
Let W(t) be a Brownian motion. Fix T>0. We
define the Brownian bridge from 0 to 0 (p.22)
on [0, T] to be the process

X (1) :W(t)—%W(T),OSt <T (472

21



4.7.2 Brownian Bridge as a
Gaussian Process

X(t)=W(t)—%W(T),O£t£T

* The process X(t) satisfies

X(0)=X(T)=0 t=0 X(0)=W(0)-0=0

t=T X(T)=W(T)-W(T)=0

« Because W(T) enters the definition of X(t) for
0 <t<T, the Brownian bridge X(t) Is not
adapted to the filtration F(t) generated by W(t).

22



4.7.2 Brownian Bridge as a
Gaussian Process

X(t):W(t)—%W(T),OgtST

« For0<t, <t,<...<t <T, the random

variables

are jointly normal because W(t,),..., W(t,),

W(T) are jointly normal.

p.6 Example 4.7.2

Linear combinations of jointly normal random variables are jointly normal.

 Hence, the Brownian bridge fro

OtoOisa

(Gausslan process.

23



4.7.2 Brownian Bridge as a

Gaussian Process

* Its mean function is easily seen to be
X)) =W (r)—?ﬂ (T) Ey/)] E [W )
m{) = EX (1) = E[W(t)——W(T) J

- For s,t<(0,T) ,we compute the covariance
function [E[X(s)X(1)]- E[)g@f]Ep( 0]

X(s) X(t)

o5, tf = EKW () ——W (T)J(W (t) ——W (T)ﬂ EW W @e)|=s At

- E[W (W (O]~ EW (W (1)) EW o (1)} =5 EW ()

2st st St
—SAt——— 4+ =gAt—-—
T T T 24



4.7.2 Brownian Bridge as a
Gaussian Process

Definition 4.7.5.

Let W(t) be a Brownian motion. Fix T>0, a€R
and b € R. We define the Brownian bridge from a to

b on [0, T] to be the process
(b—at

Gaussian process

+X_(t),0§t£T

Gaussian process

where X(t) = X0 isfhe Brownian bridge from 0 to O.
Begins at a at time 0 and ends at b at time T.

=0 X“7(0) =a+0+X(0)=a
=T X“"(1)=a+(b-apX(T)=b
Adding a nonrandom function to a Gaussian process
gives us another Gaussian process.

X(0)=X(T)=0




4.7.2 Brownian Bridge as a
Gaussian Process

- - a—b —ajt
+ The mean function is affected: |x*")=a+" Ta) +X(O)

(b—a)t

EX()=0

m*P () =EX*°(t) =a+

 However, the covariance function iIs not
affected:

¢ (s,t) = E[(X 7" (s) = m** (5) X *7° (1)) —-m** (1) )| = s At — =

(b— a)s (b— a)t (b— a)t

=E[((a+ =2 + X (s))-(a+—2))((a+ )]
:E[X(S)X(t)] [X(S)X(t)] SAL— S%

+ X(t))-(at

26




4.7.3 Brownian Bridge as a Scaled

Stochastic Integral

 \We cannot write the Brownian bridge as a
stochastic integral of a deterministic integrand
because the variance of the Brownian bridge,

EX() =0 EX*(t)=c(t,t)=t-

t*_t(T-1t)

T T

X(s) X(t)

C(}ﬂ; Sf\f—%r

Increases for 0 <t < T/2 and then decreases for

T2<t<T.

 In Example 4.7.3, the variance of ()= JFA(H)dI’V(H) =
1S j; A (u)du , which is nondecreasing in . =

0

FO.C1- % — 0
T

S.0C -=<0
T

27



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

« \We can obtain a process with the same
distribution as the Brownian bridge from 0 to O
as a scaled stochastic integral.

28



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral
« Consider

Y(t)= (T —t)j;%dw @ost<T

» The integral | fTde (u)
—Uu

IS a Gausslan process of the type discussed In

Example 4.7.3, provided t < T so the integrand
IS defined.

29



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

« ForO<t, <t,<..<t <T,therandom
variables
Y(t) = (T - t)I(ty), Y(t,) = (T - t)1(ty),....Y(t) = (T - t)I(t,)
are jointly normal because I(t,), I(t,),...,I(t,)
are jointly normal.

* In particular, Y Is a Gaussian process.

1
T —u

Y()=(T - r)j; ﬁ AW w),0<t<T  I(f)= L dw (u)

Linear combinations of jointly normal random variables are jointly normal.

30



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

The mean and covariance functions of | are

1 4sAt v=Tu [-Vv-2aVv
m'(t)=0 [m]o dv=-du [V~1]
c'(s,t) = j

Sat 1 1
(T_ )2 du = T _ong 71 forall s, te[0,T)

This means that the mean function for Y 1s
mY(t)=0

I(t)wN(O sy e(s,0)= [ A (u)elu
1(t) = j

dw (u)

31

T —u




4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

» To compute the covariance function for Y, we assume
for the moment that 0 <s <t <T so that

Then
c'(s,t)=E

e Ifwe

c'(st):i—iz >
~ T-s T T(T-¢)

ELY(s)Y(O]-ELY (S)IERY®]
(T =s)(T=O)1(s)I ()] =(T =s)(T 1)

S

c'(s,1) =

1

1

T—sant T

T(T—s)

nad taken 0 <t<s< T, therolesofsandt

woulc

have be reversed. In general

c' (s,1) :s/\t—%t,vS,t [0, T)

(T —1)s _S_s_t
T

T

10-],

Y(n =T -1

1

T —

1
T—u

2

dW (u)

dW (u)

32




4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

 This is the same covariance formula (4.7.3) we
obtained for the Brownian bridge.

 Because the mean and covariance functions for
Gaussian process completely determine the
distribution of the process, we conclude that
the process Y has the same distribution as the
Brownian bridge from 0 to 0 on [0, T].

X(s) X(t) ro st
c(&,f{:Sﬁf—? C (,s,r)—sﬁr—? N




4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

* We now consider the variance p

_ "(s,t)=sAt——
(1) = 0] EV2(t)=c' 6= gt et clnEsarty

* Note that, as r—7, this variance converges to 0.

— As t— T => the random process Y(¢) has mean=0
=> variance converges to 0.

* We did not initially define ¥(7), but this
observation suggests that it makes sense to
define Y(7)=0.

 If we do that, then Y(?) 1s continuous at =7.

34



4.7.3 Brownian Bridge as a Scaled

Stochastic Integral

Theorem 4.7.6
Define the process ( t 1
(T _t)joT—dW(u) for0<t<T,
—u

Y(t) =
(t) <O for t=T

Then Y(t) Is a continuous Gaussian process on [0,T] and has
mean and covariance functions

m'(t)=0,t[0,T]

c' (s,1) :s/\t—%t,vS,t e[0,T]

In particular, the process Y(t) has the same distribution as the
Brownian bridge from 0 to 0 on [0, T] (Definition 4.7.5)

35



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral
 \We note that the process Y(t) is adapted to the

filtration generated by the Brownian motion
W(t).

1
I'—u

Y()=(T -0 ——dW ()

36



« Compute the stochastic differential of Y(t),

which IS

Y(t)=(T - r)j dw (i)

0T —u
dy (t) = j—dvv(u) d(T =t)+(T -t)- dj—dW(u)

:_j —dW(u) dt+dwW () | I0)= / A(w) dW (u) (4.2.11)
0

_ I(t) dt + dW (t) dI(t) = A(t) dW (t) (4.2.12)

1(t)= j aw (i)

0T —u

! d
T_¢ W)

37



4.7.3 Brownian Bridge as a Scaled
Stochastic Integral

» ITY(t) Is positive as t approaches T, the drift
term —Iﬂdt becomes large in absolute value
and Is negative. vy YD s o

— This drives Y(t) toward zero. I'—1

» On the other hand, If Y(t) Is negative, the drift
term becomes large and positive, and this
again drives Y(t) toward zero.

 This strongly suggests, and it Is indeed true,
that as t —T the process Y(t) converges to zero
almost surely.

38



4.7.4 Multidimensional Distribution
of the Brownian Bridge

« Wefix a€R and beR andlet X*"(t)denote the Brownian bridge
fromatobon [0.T]. Wealso fix 0=t, <t <t, <...<t <T.Inthis
section, We compute the joint density of X *~°(t,),---, X7 (t.) .

We recall that the Brownian bridge from a to b has the mean

function
N (b—a)t _ (T _t)a+ bt

a—b
m t)=a
(t T T

and covariance function

st
c(s,t) =sat——
(s,1) T

When S <1, we may write this as

c(s,t) = g St_sT -1

,0<s<t<T
T T

To simplify notation, we set 7 =T ~1 sothat % =T . |T-t,




We define random variable
_ X a—b (tj ) } X a—b (tj_l)

T Tia

/.

J

Because X°7°(t,),---, X*~(t,) are jointly normal, so that 7(t),---, Z(t,)

are jointly normal. We compute EZ; , var(z,)and Cov(z,,Z.) .

Linear combinations of jointly normal random variables are jointly normal.




r;=T-t,

bt (T/t/) bt,, (T ~t))

bt
E(Z)__Exa—m(t)__Exa—)b Jl) E\ E\ -
_b(t-—t, 4) \ \

)a N btJ (T j—l)a N btj—l

T T i i
X)) X
, X)X
! z, T
(1) = a + (b—a)t _ (I'—ta +bz‘
T I I

TTJZ'J_

41



Var(Z,) = iVar(X TR - Cov(X*™"(t,), X*7°(t, ) + iVar(X P (L))

sz Eitja sz—l
1 2 1
:T—ZC(tj,tj)—TT C(tj’tj‘1)+TTC(tj—1’tj_1)
J i i1
_ t; B 2'[,--1 N ST} _tj (T -t 1)—2tj_1(T&(j)+tj_l(T _tj) _tj -t
Tryp Try, Trgy Tr7, P
j{ﬂ—}.ﬁ ‘. j{ﬁ—r.ﬁ .
Z__ — (J)_ (__,-' 1)
’ 7, 7
st s(T —t
s =s—2 ==Y gcscieT
T T
tt t,(T-t) t,r
C(tj—litj):tj,l— 1 _ J_l( J) _ Y
r.=T1-t

J j

42



1

|1le

) _

COV(ZHZ )_—C(tl’tj) L C(tl’tjl) (Il’t )+
|<J | j—l |1 j
t?r\) AT M) 6t
TT\KJ TT%\jl 17,7, Tful%\u
rj—T t
Zj _ j{-ﬂ—hﬁ (rj) ) jfnr—nﬁ (rj_l )
Y T
c(s,t):s—St:S(r_t) L 0<s<t<T
T T
ol 1) =t~ = S

T T

c(tiy t;,)

43



« Z(t,),---,Z(t,) are jointly normal.
. Cm‘(Z.,..ZJ_.) — ().

fx,Y(!E, Y)

B 2wo1024/1 — p?

1 exp{— 1 [(33—#1)2 _ 2p(x — p1)(y — po2)

2(1 - Pz) Uf 0102

L _52)2] } (2.2.17)

09

Cov(X,Y)=0 & X,Y are independent

 The normal random variable Z,,.. ., Z _ are
Independent.

44




* So we conclude that the normal random variable =z ,.._, z, . are
Independent, and we can write down their joint denS|ty, which'is

mean
( 2 3\
, b(t; —t,)
|-
: 1 1 7T
fZ(tl) ..... Z(t)(zl’ Zn):H expy——- — g
j= t _t-_ 2 J j—l
J J-1 J
2mw———
Bz~ 2t TiTja TiTia
I 7T . variance ) .variance ’
Vm‘(ZJ.) _ i =a , b(tJ _tj—l)
T, 1 . ) .
=expi-= > ) T
293 -t =1 27ztj -t
Titia T,
N ARIEZHY M ‘ﬁiﬁ%@&%iﬁ
we make the change of variables
X; X _
Zj — o 1 J :11 1n1



X .

« Wherex,=a, to find joint density for X *>*(t,),---, X" (t,).
We work first on the sum in the exponent to see the effect of
this change of variables.

( 2 3\
(Z. _ b(t; _tjl)j
j

: 1 1 TiTja
fZ(tl) ..... Z(tn)(zli' Zn) :H eXp<—E- _— >

=1 -1, i~ il

27
TiTja Titja

=eXP4-—




 \We have

2
n (z- _ b=t ) T R
y J TiTi—1 - -
J=1 TjTj—1
n 2
_ z TjT5-1 (Sﬂj . Tj—1 B b(tj — tj—l))
STl \T Tl TjTj-1
n ey 2 2 2(4. — . )2 oy
t; — t; 2 12 T272 TiT;
j=1 7 7—1 3 j—1 3 '5=1 173-1

2 2

_ 2z;b(t; —t-1) n 22, _1b(t; — tj—l))
j

(a+b+c)® = a® +b° + ¢ + 2ab + 2ac + 2bc

47



i1, Bt —ti-1)? 23535
g TITE TjTj—1
2Ijb(tj tj-l) 2Ij_lb(tj - tj—l))
TJ?TJ..:[ Tjrjz—]
ij§_1 bi(t; —tji—1) 2xjxi4
Tj-1(t; — tj-1) TjTj-1 tj —tj-1
2‘1,‘jb 2Ij_1b
75 Tj—1

48



mn 2 2
Ti-1T; Ti%5-1 V2(t; —tj—1)  2x;xj_y
+ + -
S\t —ti-1) Tt —ti) TjTj—1 tj —tj-1
_ 2Ijb + 2Ij_1b
Tj Tj—l
n 2 2
z Ti T Irs_ Ti— T
— J (1_'_:.'1 J)_l_ j—1 (1_31 J)
2T ;T ; [z Tj-1
(o) 2L (G-2)
t-:" — tj_l =1 Ti—-1 1=1 T Ti-1
14 Tji—1 — Tj _Tj+Tj_1.Tj_ Tj_1 (i 1 ) _Ti1 Tj _ ti—tj_1
) —_ 7. Ti 1. Ti 1.Ti Ti
G T == ) = (T —tjo) — (T —t) =t; — tj)

49



3

.
ﬂ_

Tj—1 —Tj = (T —tj—1) — (T —t;) =t; — t;

I? (1+L‘(1/T:?)+ If_l
, t
=1

tj — T4

50



1=1 =1
[ 1 1 [z T
G- =56
; T3 Tj-1 ; i Tj-1
:n (z; — zj-1)° zs _ﬂ2+b2( L1
o ti —tj—1 T—t, T Tr—t, T
Tn a
(9
I—tn T r,=T-1, X, =a

n 7
Z o R e W W s ) WY G YA, (RS x"_x"/lz Xn _ %o
(Tj Tj l) (1 To) (Tz %/{ (Tn //n_l) (Tn To) Sl




I
iM:

(z;—z5-1)* | 72 _ﬂ_ﬂHF( L _1)
tj_tj—l T—t, T

Tn a
2 (T —tn -ff‘)

— Tj— 1)2+(b—$n)2_ (b—ﬂ)z'
—t:_.. 1 T —t, T

|
b | =
L
2
f""""\

bty —t,—1 )2
ijj—l
t,—t, 1
=1 ijj 1

_ (zj —z-1)>  (b—=zn)®  (b—a)?
—EKP{ Z ;,,—tj-_l T 2T —t,) | 2T }

;.'—1
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* To change a density, we also need to account
for the Jacobian of the change of variables. In
this case, we have

OZ . 1 Tj TJ—I
L = j=1,..,n ;=

OX; T, . T

82j = — L , ] =2,...,n,

OX;_3 T,

and all other partial derivatives are zero. This
leads to the Jacobian matrix | X o ... o

211 0




+ Whose determinant is T}, . Multiplying
f0..2) (ZZ,) DY this determinant and using
the change of variables worked out above, we
obtain the density for X*°(t),---, X3°(t,),
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. . " 1
determinant is ||’ —

By

fxa—bb{tl) _____ X’a—bb(t“](:ﬂl,...,ﬂ_ﬂ'ﬂ)

1o (zj—xj-1)2 (b—2zn)% (b—a)?
'Exp{_iz t Tt 2Tty o }

. b(t, —t,))
J
1 n Tjrj-l n

J=1

Tj Tj-l

27




n

1
1 — z-1)°
s i-1) b—
j=1 t - tJ 1 é mn)z
=1 \/27T(t J l)
1 n
. Z (-'L'J - m.’i—l)z (b— 2
= t —t,-..l 2(T "B“)
- tn)
T
21
2 3[11:1 - %
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\jZTL’

_VT_tn H\/27l't —tJ 1)

- exp _1L —~ (&j —zj-1)? _ (b—=n)?
242t~ ;1 2T —tn)

_p(T_tn Zpn,b) HP

p(T,a,b) b mon )

where

1
p(T, I, y) — \/%—Texp {_

is the transition density for Brownian motion.

2T

4 (b—a,)2}

(y — z)?

2T

(4.7.6)

}

R Z5p.108
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4.7.5 Brownian Bridge as a
Conditioned Brownian Motion

« The joint density (4.7.6) for x 2" (t,),---, X *°(t) permits us to give one
more interpretation for Brownian bridge from a to b on O,Tg .
It is a Brownian motion W (t) on this time interval, starting at W (0) =a
and conditioned to arrive at b at time T (i.e., conditioned on W(T) =b).
Let O=t, <t <t, <...<t, <T be given. The joint density of
W(t),...,W(t,),W(T) IS

, where W(0)=x, =a (4.7.7)

This is because pt, —t,,x,,x ) = p(t,,a,%) IS the density for the Brownian
motion going fromyy ) = 5 10 W(t,) = x In the time between t=0and t =t, .
Similarly, pct, —t,, %, x,)1S the density for going fromw () = x, t0 wt,) = x,
between time¢ =, and ¢ =t, - The joint density for w t,) and w t,) is2t?1en
the product

p(t1va’X1) p(tz _t1’X1’X2)-
Continuing in this way, we obtain the joint density (4.7.7).




The marginal density of W (T') is p(T, a, b).
So, the density of W (t,),...,W(t,)conditioned on W (T ) = b is thus the quotient

— joint density of
p(T B tn ] Xn ! b t _t W(tl) ..... W(tn),
| | | [ pt —ti x5, %))

marginal density of W(T)| P(T,a,b)| |52 W(T)

Finally, let us define
M a—b (I-) — max X a—b (t)
0<t<T
to be the maximum value obtained by the Brownian bridge from a to b on
[0,T] . This random variable has the following distribution.



Corollary 4.7.7.

Brownian bridge from a to b on [0, T] — a Brownian
motion W(t) on this time interval, starting at W(0) = a

_ . . Mﬂ'—}ﬂl T M
The density of (T)is and conditioned on W(T) = b

2Q2y—b—-a) E—;(J'—ﬂ}(l—é)

- y > max{a,b}. (4.7.8)

f_‘lfﬂ_}b(f} (}*) —

Proof : Because the Brownian bridge from 0 tow on [O,T] is a Brownian

motion conditioned on W (T) = w, the maximum of x°-* on|0.T|is the
maximum of j~on|0.T| conditioned on #(T') = w . Therefore, the density

of M 7" (T) was computed in Corollary 3.7.4 and is

2m(m—w)

d w<m,m>0. (4.7.9)

22m—-w) -

f:u“—‘“'(r) (m) = T €

Corollary 3.7.4. The conditional distribution of M(t)) given W(t) = w is
the maximum of the Brownian motiormon [0, t]

2(2m - W _2m(m-—-w)
fM(t)|W(t)(7TL|w) = ; )e t , w<m,m>0. 60




Corollary 4.7.7.

The density of M (T)is

v > maxi{a,b}. (4.7.8)

2Qy—b—a) -Hy-ax-b
Srgoiry (V) = - e’

Proof : Because the Brownian bridge from 0 tow on [U,T] is a Brownian
motion conditioned on W (T) = w, the maximum of y°- on[0.T]is the
maximum of - on|0.T| conditioned on /7 (T') = w . Therefore, the density
of M °7"(T) was computed in Corollary 3.7.4 and is

o _lm{m—w}
= 2@m —w) e T w<m,m>0. (4.7.9)

=

f_.u“—’“'(r} (m) T

The density of f..., (v) can be obtained by translating from the initial
condition ' (0) = a to 7 (0) = 0 and using (4.7.9). In particular, in (4.7.9)
we replace M by ¥ —a and replace W by b — g. This result in (4.7.8).
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