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4.7.1 Gaussian Process

Definition 4.7.1:

A Gaussian process X(t), t ≥ 0, is a stochastic 

process that has the property that, for arbitrary 

times 0 < t1 < t2 < … < tn, the random variables 

X(t1), X(t2), …, X(tn) are jointly normally 

distributed.
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• The joint normal distribution of a set of vectors 

is determined by their means and covariances.



• For a Gaussian process, the joint distribution 

of X(t1), X(t2), …, X(tn) is determined by the 

means and covariances of these random 

variables. 

• We denote the mean of X(t) by m(t), and, for 

s ≥ 0, t ≥ 0, we denote the covariance of X(s)

and X(t) by c(s, t); i.e.,
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Example 4.7.2 (Brownian motion)

Brownian motion W(t) is a Gaussian process. 

For 0 < t1< t2 <…< tn, the increments

are independent and normally distributed.

Increments over nonoverlapping time intervals are independent

W(t)-W(s)~N(0,t-s)
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)()(,),()(),( 112211 −−=−== nnn tWtWItWtWItWI 

,)(,,)(,)(
1

2

1

211 
==

===
n

j

jn

j

j ItWItWItW 

W(t0)=0

W(t2)=W(t1)+I2



6

Example 4.7.2 (Brownian motion)

• The random variables W(t1), W(t2), …, W(tn) are 

jointly normally distributed. Gaussian process

Independent normal random variables are jointly normal.

I1,I2,…,In are jointly normal

Linear combinations of jointly normal random variables 

are jointly normal.

• The mean function for Brownian motion is
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0 < t1< t2 <…< tn
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Example 4.7.2 (Brownian motion)

• We may compute the covariance by letting 0 ≤ 
s ≤ t be given and noting that

• Because W(s) and W(t) - W(s) are independent 
and both have mean zero, we see that
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Example 4.7.2 (Brownian motion)

• The other term, E[W 2(s)], is the variance of 

W(s), which is s.

E[W2(s)]-(E[W(s)])2
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Example 4.7.2 (Brownian motion)

• We conclude that c(s,t)=s when 0 ≤ s ≤ t. 

• Reversing the roles of s and t, we conclude that 

c(s,t)=t when 0 ≤ t ≤ s.

• In general, the covariance function for 

Brownian motion is then

where           denotes the minimum of s and t. 
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• Let ∆(t) be a nonrandom function of time, and 

define

where W(t) is a Brownian motion. Then I(t) is 

a Gaussian process, as we now show.

• In the proof of Theorem 4.4.9, we showed that, 

for fixed            , the process  

is a martingale.
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• Then

and we thus obtained the moment-generating 

function formula

(with mean zero and variance              )

• I(t)~N(0,           )

)(
)(

2

1

0

22

)()0(1 tuI
dssu

uu EeetEMM

t




===
−


=


t

dssu
tuI eEe 0

22 )(
2

1

)(

 
t

dss
0

2 )(

is a martingale.

 
t

dss
0

2 )(



12

Example 4.7.3 

(Itô integral of a deterministic integrand)

• We have shown that I(t) is normally distributed, 

verification that the process is Gaussian 

requires more.

• Verify that, for 0 < t1 < t2 < … < tn, the random 

variables I(t1), I(t2), …, I(tn) are jointly 

normally distributed. 
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• It turns out that the increments

are normally distributed and independent(p.14), 

and from this the joint normality of I(t1), I(t2), … ,I(tn)

follows by the same argument as used in Example 

4.7.2 for Brownian motion.
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I(t1)=(I(t1)-I(0))

I(t2)=(I(t2)-I(t1))+(I(t1)-I(0))

Independent normal random variables are jointly normal.

(I(t1)-I(0)), (I(t2)-I(t1)),…,(I(tn)-I(tn-1)) are jointly normal

Linear combinations of jointly normal random variables are jointly 

normal.



• Next, we show that, for 0 < t1 < t2, the two 

random increments I(t1)-I(0)=I(t1) and I(t2)-I(t1)

are normally distributed and independent.

• The argument we provide can be iterated to 

prove this result for any number of increments.
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Example 4.7.3 

(Itô integral of a deterministic integrand)
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• For fixed             , the martingale  property of Mu2

implies that

• Now let            be fixed. Because            is F(t1)-

measurable, we may multiply the equation above 

by this quotient to obtain 
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• We now take expectations
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• Where we have used the fact that ∆2(s) is 

nonrandom to take the integrals of ∆2(s) 

outside the expectation on the right-hand side.
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• This leads to the moment-generating function 
formula   
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• The right hand side is the product of 

– the moment-generating function for a normal random 
variable with mean zero and variance

– the moment-generating function for a normal random 
variable with mean zero and variance
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• It follows that I(t1) and I(t2)-I(t1) must have 

these distributions, and because their joint 

moment-generating function factors into this 

product of moment-generating functions, 

they must be independent.
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Example 4.7.3 

(Itô integral of a deterministic integrand)

• We have

• For the general case where s ≥ 0 and t ≥ 0 and 

we do not know the relationship between s and 

t, we have the covariance formula
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4.7.2 Brownian Bridge as a 

Gaussian Process

Definition 4.7.4.

Let W(t) be a Brownian motion. Fix T>0. We 

define the Brownian bridge from 0 to 0 (p.22) 

on [0,T] to be the process

TtTW
T

t
tWtX −= 0),()()( (4.7.2)
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4.7.2 Brownian Bridge as a 

Gaussian Process

• The process X(t) satisfies

X(0) = X(T) = 0

• Because W(T) enters the definition of X(t) for  
0 ≤ t ≤ T, the Brownian bridge X(t) is not 
adapted to the filtration F(t) generated by W(t).

t=0    X(0)=W(0)-0=0

t=T    X(T)=W(T)-W(T)=0

TtTW
T

t
tWtX −= 0),()()(
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4.7.2 Brownian Bridge as a 

Gaussian Process

• For 0 < t1 < t2 < … < tn < T, the random 

variables 

are jointly normal because W(t1),…, W(tn), 

W(T) are jointly normal.

• Hence, the Brownian bridge from 0 to 0 is a 

Gaussian process.
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p.6  Example 4.7.2

Linear combinations of jointly normal random variables are jointly normal.
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4.7.2 Brownian Bridge as a 

Gaussian Process
• Its mean function is easily seen to be

• For                 ,we compute the covariance 

function  E[X(s)X(t)]-E[X(s)]E[X(t)]
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4.7.2 Brownian Bridge as a 

Gaussian Process

Definition 4.7.5.

Let W(t) be a Brownian motion. Fix T>0,
and           . We define the Brownian bridge from a to 

b on [0, T] to be the process 

where X(t) = X0→0 is the Brownian bridge from 0 to 0.
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Adding a nonrandom function to a Gaussian process 

gives us another Gaussian process.

Gaussian process
Gaussian process 
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4.7.2 Brownian Bridge as a 

Gaussian Process

• The mean function is affected:

• However, the covariance function is not 

affected:

T

tab
atEXtm baba )(

)()(
−

+== →→

( )( ) 
T

st
tstmtXsmsXEtsc bababababa −=−−= →→→→→ )()()()(),(

=E[((a+
𝑏−𝑎 𝑠

𝑇
+ 𝑋(𝑠))-(a+

𝑏−𝑎 𝑠

𝑇
))((a+

𝑏−𝑎 𝑡

𝑇
+ 𝑋(𝑡))-(a+

𝑏−𝑎 𝑡

𝑇
))]

=E[X(s)X(t)]



27

4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• We cannot write the Brownian bridge as a 

stochastic integral of a deterministic integrand 

because the variance of the Brownian bridge,

increases for 0 ≤ t ≤ T/2 and then decreases for 

T/2 ≤ t ≤ T.
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• We can obtain a process with the same 

distribution as the Brownian bridge from 0 to 0 

as a scaled stochastic integral.
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• Consider

• The integral 

is a Gaussian process of the type discussed in 
Example 4.7.3, provided t < T so the integrand 
is defined.
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• For 0 < t1 < t2 < … < tn < T, the random 

variables
Y(t1) = (T - t1)I(t1), Y(t2) = (T - t2)I(t2),…,Y(tn) = (T - tn)I(tn)

are jointly normal because I(t1), I(t2),…,I(tn) 

are jointly normal.

• In particular, Y is a Gaussian process.

Linear combinations of jointly normal random variables are jointly normal.



31

4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• The mean and covariance functions of I are

for all

• This means that the mean function for Y is  

mY(t) = 0
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• To compute the covariance function for Y, we assume 

for the moment that 0 ≤ s ≤ t ≤ T so that

Then

• If we had taken 0 ≤ t ≤ s < T, the roles of s and t

would have be reversed. In general
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• This is the same covariance formula (4.7.3) we 

obtained for the Brownian bridge.

• Because the mean and covariance functions for 

Gaussian process completely determine the 

distribution of the process, we conclude that 

the process Y has the same distribution as the 

Brownian bridge from 0 to 0 on [0,T].
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral
Theorem 4.7.6

Define the process

Then Y(t) is a continuous Gaussian process on [0,T] and has 
mean and covariance functions

In particular, the process Y(t) has the same distribution as the 
Brownian bridge from 0 to 0 on [0,T] (Definition 4.7.5)
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• We note that the process Y(t) is adapted to the 

filtration generated by the Brownian motion 

W(t).



• Compute the stochastic differential of Y(t), 

which is
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4.7.3 Brownian Bridge as a Scaled 

Stochastic Integral

• If Y(t) is positive as t approaches T, the drift 
term              becomes large in absolute value 
and is negative.

– This drives Y(t) toward zero.

• On the other hand, if Y(t) is negative, the drift 
term becomes large and positive, and this 
again drives Y(t) toward zero.

• This strongly suggests, and it is indeed true, 
that as t     T the process Y(t) converges to zero 
almost surely.
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4.7.4 Multidimensional Distribution 

of the Brownian Bridge

• We fix             and           and let              denote the Brownian bridge 
from a to b on          . We also fix                                           . In this 
section, We compute the joint density of                                       .

We recall that the Brownian bridge from a to b has the mean 
function 

and covariance function 

When         , we may write this as 

To simplify notation, we set                  so that            .  T- t0
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• We define random variable

Because                                      are jointly normal, so that                            
are jointly normal. We compute        ,             and                  .
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Linear combinations of jointly normal random variables are jointly normal.
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1( ), , ( )nZ t Z t

•

• are jointly normal.

Cov(X,Y)=0 ⇔ X,Y are independent 

• The normal random variable                        are 

independent.
1, , nZ Z



• So we conclude that the normal random variable                        are 
independent, and we can write down their joint density, which is 

we make the change of variables 
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• Where           , to find joint density for                                   . 
We work first on the sum in the exponent to see the effect of 
this change of variables. 

0x a= 1( ), , ( )a b a b

nX t X t→ →

1

2

1

-1

( ),..., ( ) 1

11 1

-1-1

2

1

-1

11

-1

( )

1 1
( ,..., ) exp

2
2

( )

1
                                exp -

2

n

j j

j
n

j j

Z t Z t n

j jj j j

j jj j

j j

j
n

j j

j jj

j j

b t t
z

f z z
t tt t

b t t
z

t t

 


  

 

 

−

−= −

−

−=

  −
 −     

= −  
−−  

 
  

 −
−  

 
=

−




1 1

-1

1
.

2

n

j j j

j j

t t


 

= −

 
 
  

 
− 

 
  





• We have
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• To change a density, we also need to account 

for the Jacobian of the change of variables. In 

this case, we have

and all other partial derivatives are zero. This   

leads to the Jacobian matrix
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• Whose determinant is              . Multiplying                                                

by this determinant and using  

the change of variables worked out above, we 

obtain the density for                                  ,
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4.7.5 Brownian Bridge as a 

Conditioned Brownian Motion
• The joint density (4.7.6) for                                      permits us to give one 

more interpretation for Brownian bridge from a to b on          .  
It is a Brownian motion         on this time interval, starting at            
and conditioned to arrive at b at time T (i.e., conditioned on                 ). 
Let                                            be given. The joint density of                                               

is

This is because                                         is the density for the Brownian 
motion going from                to                in the time between         and          . 
Similarly,                        is the density for going from                 to                 
between time         and           . The joint density for           and           is then 
the product
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So, the density of                        conditioned on                 is thus the quotient

and this is                                                       of (4.7.6).

Finally, let us define

to be the maximum value obtained by the Brownian bridge from a to b on            

. This random variable has the following distribution.  
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Corollary 4.7.7.
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Brownian bridge from a to b on [0, T]         a Brownian 

motion W(t) on this time interval, starting at W(0) = a 

and conditioned on W(T) = b

the maximum of the Brownian motion on [0, t]



Corollary 4.7.7.
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